The Cartesian Product and Join Graphs on Edge-Version Atom-Bond Connectivity and Geometric Arithmetic Indices
نویسندگان
چکیده
منابع مشابه
Comparing the excepted values of atom-bond connectivity and geometric–arithmetic indices in random spiro chains
The atom-bond connectivity (ABC) index and geometric-arithmetic (GA) index are two well-studied topological indices, which are useful tools in QSPR and QSAR investigations. In this paper, we first obtain explicit formulae for the expected values of ABC and GA indices in random spiro chains, which are graphs of a class of unbranched polycyclic aromatic hydrocarbons. Based on these formulae, we t...
متن کاملVertex and edge PI indices of Cartesian product graphs
The Padmakar-Ivan (PI) index of a graph G is the sum over all edges uv of G of the number of edges which are not equidistant from u and v. In this paper, the notion of vertex PI index of a graph is introduced. We apply this notion to compute an exact expression for the PI index of Cartesian product of graphs. This extends a result by Klavzar [On the PI index: PI-partitions and Cartesian product...
متن کاملOn super edge-connectivity of Cartesian product graphs
The super edge-connectivity λ′ of a connected graph G is the minimum cardinality of an edge-cut F in G such that every component of G − F contains at least two vertices. LetGi be a connected graph with order ni , minimum degree δi and edge-connectivity λi for i = 1, 2. This article shows that λ′(G1 × G2) ≥ min{n1 λ2,n2 λ1,λ1 + 2λ2, 2λ1+λ2} forn1,n2 ≥ 3 andλ′(K2×G2) = min{n2, 2λ2}, which general...
متن کاملOn restricted edge connectivity of regular Cartesian product graphs
Explicit expressions of the restricted edge connectivity of the Cartesian product of regular graphs are presented; some sufficient conditions for regular Cartesian product graphs to be maximally or super restricted edge connected are obtained as a result.
متن کاملOn Second Atom-Bond Connectivity Index
The atom-bond connectivity index of graph is a topological index proposed by Estrada et al. as ABC (G) uvE (G ) (du dv 2) / dudv , where the summation goes over all edges of G, du and dv are the degrees of the terminal vertices u and v of edge uv. In the present paper, some upper bounds for the second type of atom-bond connectivity index are computed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecules
سال: 2018
ISSN: 1420-3049
DOI: 10.3390/molecules23071731